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Excitonic behavior in self-assembled InAs/GaAs quantum rings in high magnetic fields
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We investigate the exciton energy level structure of a large ensemble of InAs/GaAs quantum rings by
photoluminescence spectroscopy in magnetic fields up to 30 T for different excitation densities. The confine-
ment of an electron and a hole in these type I quantum rings along with the Coulomb interaction suppress the

excitonic Aharonov-Bohm effect. We show that the exciton energy levels are nonequidistant and split up in
only two levels in magnetic field, reflecting the ringlike geometry. A model, based on realistic parameters of the
self-assembled quantum rings, allows us to interpret the essential features of the observed PL spectra in terms

of the calculated optical transition probabilities.

DOI: 10.1103/PhysRevB.80.155318

The excitonic energy structure of self-assembled quantum
dots (QDs) is well studied.’> By magnetoluminescence ex-
periments it has been demonstrated that the electronic energy
levels in a QD can be described by the Fock-Darwin model
for a two-dimensional harmonic oscillator in a magnetic
field.> Changing the QDs to ringlike structures modifies the
energy spectrum, and gives rise to the Aharonov-Bohm (AB)
effect: the oscillatory behavior of charge carriers in a ringlike
geometry as a function of the magnetic flux threading the
opening of the ring.!? If the magnetic field penetrates into the
conducting region of the ring, the AB-type oscillations due to
the magnetic flux threading the opening coexist with the dia-
magnetic shift of energy levels and are aperiodic (see, e.g.,
Refs. 11 and 12).

The optical emission of self-assembled InAs/GaAs quan-
tum rings (QRs) (Refs. 13 and 14) has been studied experi-
mentally without a magnetic field,!> and in magnetic fields
not higher than 9 T.!¢ In general, excitons are neutral excita-
tions, thus on forehand we do not expect any sensitivity to
the magnetic flux. However, since the exciton is a polarizable
composite particle, the area between the different trajectories
of the electron and the hole determines the phase picked up
by the exciton.!” Therefore the possible prominence of the
AB effect for excitons strongly depends on their polarization.
Calculations of the photoluminescence (PL) spectra of type I
GaAs/AlGaAs and several type II QRs showed that a weak
reminiscent feature of the AB effect in the PL spectrum
might be observed.'®!® Experimentally the optical AB effect
has been shown in different ringlike structures.?*->> Recently,
the exciton energy spectra for various models of the InAs/
GaAs self-assembled QRs were calculated as a function of
the applied magnetic field and it was shown that the spectra
are very sensitive to the details of the QR shape.?

In this paper we consider the excitonic properties of self-
assembled InAs/GaAs QRs in magnetic fields up to 30 T.
Using different excitation densities we probe the
magneto-PL of the ground and excited states. The essential
features in the magneto-PL spectra are reproduced in calcu-
lations based on a realistic QR model.2*% We will demon-
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strate that QRs have nonequidistant energy levels and exhibit
a magnetic field induced splitting of the higher excitonic
energy levels into two levels, in contrast to the n+1 fold
degeneracy of the nth excited state of QDs with a harmonic
confinement potential. Furthermore, we will show that the
confinement of an electron and a hole along with the Cou-
lomb interaction suppress the excitonic AB effect in these
QRs.

For the PL studies, a sample containing a single layer of
QRs (Refs. 13 and 14) is mounted in a liquid-helium bath
cryostat at 7=4.2 K. The excitation is provided by a Dye
laser operating at 2 eV. The excitation power is varied with a
Babinet-Soleil compensator in combination with a linear po-
larizer. A Wollaston prism allows for simultaneous detection
of both circular polarizations. The PL signal is dispersed by a
single grating spectrometer, and the detection is performed
by a liquid-nitrogen-cooled charge-coupled device camera.
Static magnetic fields up to 30 T were applied parallel to the
growth direction and the PL is detected in the Faraday
configuration.

The dependence of the QR emission energy on the exci-
tation density is shown in Fig. 1(a). The ground-state emis-
sion energy of the QRs is centered around 1.308 eV, typical
for these nanostructures.'* The ground-state emission has an
inhomogeneous broadening with a full width at half maxi-
mum of 20 meV. With increasing excitation density two ad-
ditional peaks can be resolved. These peaks have an energy
of 39 and 63 meV above the ground-state energy. The wet-
ting layer (WL) emission is centered around 1.438 eV (not
shown), which is 67 meV above the highest observed
confined-state energy of the QRs.

We determine the energy of the ground-state PL by fitting
the spectra at low excitation densities by a Gaussian. The
observed ground-state emission energy E(B) of an exciton in
a QR for relatively small B is approximately given by
E(B)=Ey* $g.upB+a,B> % Here E, is the emission energy
at B=0 T, g, is the exciton g factor, up=+5.79
%X 107> eV/T is the Bohr magneton, and a, is the diamag-
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FIG. 1. (Color online) (a) PL as a function of excitation density,
for which the lowest (highest) excitation density is 10> W cm™
(10> W cm™2). Two excited states can be distinguished for higher
excitation density located 38 and 63 meV above the ground-state
emission energy. The inset shows the diamagnetic shift E;;, of the
ground state. The quadratic fit (red line) is used to determine the
diamagnetic coefficient . (b) Excited states as a function of B in
o~ polarization for an excitation density of 10> W cm™. The
dashed lines are guides to the eye in order to follow the evolution of
the peak positions in B. The arrow indicates the emission energy at
which for QDs a third peak is present. As opposed to QDs we
observe a minimum in PL intensity.

netic coefficient. The second term is the Zeeman term which
gives rise to a spin-induced splitting of the exciton PL in a
magnetic field. We define gex:ﬂ%ﬁ, and find g,
=-1.7, in correspondence with previously reported values
obtained on individual QRs and comparable to values for
QDs.2%26 In the inset of Fig. 1(a) the diamagnetic shift £, is
shown, defined by Ed,-a=ﬂi;ﬂiz—EO. The diamagnetic
shift has a smooth dependence on the magnetic field. From
the quadratic fit (solid line) we find a,=10 ueV/T?, in
agreement with previous reported values for QRs (Ref. 16)
and QDs.2°

To investigate the influence of the ringlike geometry on
the excitonic behavior in the excited states of the QRs, we
measured the magneto-PL of these structures for higher ex-
citation intensities. Figure 1(b) shows the higher excitation
data in o~ polarization as function of B in intervals of 5 T.
The dashed lines are a guide to the eye and follow the peak
positions. We have carefully assigned the PL peak positions
as function of B by comparing the PL spectra at different B
(see Fig. 2). As implied by Fig. 1(b), both resolvable excited
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FIG. 2. The energy diagram showing the peak position in B in
both o~ (empty circles) and o (filled circles) polarization. The QRs
exhibit splittings into two states of the different excited states, in
contrast to QDs where a third peak (indicated by the dashed line) is
observed.

states split up in two separate peaks. Each of the PL peaks of
the QRs Zeeman splits further with a smaller energy separa-
tion into two peaks of opposite circular polarization.

To understand the energy structure of the excitons we use
a model based on the structural properties of these QRs ob-
tained by cross-sectional scanning tunneling microscopy
measurements.'>>*2” The model is used to calculate the
single-exciton optical transition probability spectrum.?? The
results are shown in Figs. 3(a) and 3(b), for a noninteracting
and an interacting electron-hole pair, respectively. For a non-
interacting electron-hole pair we calculate that around B
=15 T there is a crossover in the ground-state energy, in
agreement with magnetization experiments.”® The inclusion
of the Coulomb interaction results into a smooth behavior of
the ground-state energy as function of B, as shown in Fig.
3(b). At a magnetic field of 15 T the calculated spectrum
shows that the first-excited state has a reduced optical spec-
tral probability. This is due to the redistribution of the oscil-
lator strength between the first-excited state and the ground
state in favor of the latter. In the case of the interacting
electron-hole pair the ground-state energy is lowered by the
energy of the electron-hole Coulomb attraction, which is 13
meV.

In the following we compare the experimental results with
the theoretical calculations. The calculated ground-state
emission energy is 1.34 eV, in reasonable agreement with the
measured ground-state PL energy (1.31 eV). In general we
find that the calculated energies are ~30 meV higher than
the experimental values. The PL of the continuum states in
the WL is calculated to be at 1.43 eV, which corresponds
well to the measured value of 1.44 eV. Moreover, the calcu-
lations show at B=30 T a 10 meV shift of the ground state
to higher energy, where the experimental value is 8§ meV. The
Zeeman effect is not taken into account in the calculations.
Both experimentally and theoretically we find a smooth de-
pendence of the ground-state emission energy on B, which is
a consequence of the Coulomb interaction.

To interpret the higher lying energy states, we will focus
only on the states in the model having a large spectral tran-
sition probability [cf. Fig. 3(b)], and compare them with the
experimentally observed PL peaks. The first-excited state is
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FIG. 3. Calculated optical transition probabilities for a realistic
QR in the case of (a) a noninteracting electron-hole pair and (b) an
interacting electron-hole pair. The gray scale is logarithmic where
black (white) corresponds to the highest (lowest) transition prob-
ability. The arrows correspond to the first excitonic AB resonance in
the ground state.

expected at 20 meV above the ground-state emission energy.
However, in our experimental data we cannot resolve this
peak due to the inhomogeneous broadening. The second-
excited state in our model is at 58 meV above the ground-
state emission energy and corresponds to the second peak in
our experiment, whereas the calculated energy level at 1.42
eV, 82 meV above the ground-state emission, corresponds to
the third peak we observe. In order to better compare the
calculated spectra to the experimental spectra we introduce a
Gaussian broadening I', which simulates the inhomogeneous
broadening of the ensemble. For I'=10 meV, we find the
best comparison of the calculated spectra with the experi-
mental data. Figure 4 shows the calculated PL spectra for B
up to 30 T in steps of 5 T. The calculated and measured
spectra [cf. Fig. 1(b)] show a qualitative resemblance, al-
though the absolute values of the energy splittings are differ-
ent. Importantly, the introduced broadening indeed shows
that the first-excited state is not resolvable in the magneto-
PL. We do note that based on our model we assign the mea-
sured PL peaks to different excitonic states in the QRs as
compared to the identification based on PLE measurements
on single QRs.?’ However, within the theoretical model,
which was successfully applied to explain the magnetization
behavior of QRs on similar samples,'??® we found that for all
realistic ring parameters the PL of the first-excited state is
concealed by the ground-state luminescence if an inhomoge-
neous broadening of about 20 meV is included.

The excitonic behavior characteristic for ringlike struc-
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FIG. 4. Calculated broadened optical transition probabilities P
as a function of the emission energy E for B=0 to 30 T in 5 T steps.

tures manifests itself in the magneto-PL under high excita-
tion conditions. We observe the splitting of the excited states
into two states as well as nonequidistant energy level split-
tings. In contrast to our measurements, experiments on QDs
resulted in a magnetic induced splitting of the d state into
three states and equidistant energy levels.>®® This d state
corresponds to the second peak in Fig. 1(b), which for QRs
has predominantly an /=2 character, where [ is the orbital
angular momentum quantum number. The dashed line in Fig.
2 indicates the position of the third energy level as observed
for QDs. However, we observe a minimum in PL intensity at
this emission energy [see arrow in Fig. 1(b)], indicating the
absence of this third peak.

In the calculations the strongest effect on the oscillator
strength is expected for the first-excited state with predomi-
nantly an /=1 character. This state is not resolved in our
measurements due to the inhomogeneous broadening. The
oscillator strength of the ground state of the single exciton of
our modeled QR does not significantly change with B, as was
confirmed in the experiments. In contrast to the AB effect of
single electrons in these rings, we do not observe nor expect
an excitonic AB effect based on our model. The absence of
prominent oscillations in the ground-state energy of the cal-
culated exciton spectra as compared to the case of a nonin-
teracting electron-hole pair is a consequence of the Coulomb
interaction. A charge-tunable QR sample will allow for the
control of the charged state of the excitons in the QR,! giv-
ing us the ability to study better the influence of the Coulomb
interaction on the AB effect in these QRs.

The details of the calculated spectra are very sensitive to
the size, shape, and composition of the QR and it is difficult
to find a quantitative agreement between the calculated opti-
cal transition probabilities and the measured PL spectra.”
The model used does not include many-exciton complexes
and charged excitonic states, which influence the optical
transition probability spectra. We estimate this will only be a
small effect as the exciton binding energy is an order of
magnitude larger compared to the exciton-exciton interaction
and additional charging energies. In order to calculate the
actual PL spectra from the optical transition probability spec-
tra, one needs to take in account a nonequilibrium distribu-
tion function for excitons in a strong laser field and use a
response theory.3%3! Despite the preliminary character of our
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model, we are able to find a qualitative agreement between
the measurements and the calculations and thereby we can
explain the essential features in our measurements.

To conclude, we have analyzed the emission energy of a
large ensemble of self-assembled InAs/GaAs QRs in high
magnetic fields. Our model shows that the confinement of an
electron and a hole along with the Coulomb interaction sup-
press the excitonic AB effect in these nanostructures. The
ring character of our nanostructures results in nonequidistant
energy level splittings in the exciton diagram and into a mag-
netic field induced splitting of each excited state into two
states. This is in contrast to what has been observed in QD
measurements. The optical transition probabilities are calcu-
lated within our model, based on the characterization of a
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realistic QR. Comparing these calculations with our experi-
mental data we find a qualitative agreement, which allows us
to identify the different PL peaks and helps to explain the
excitonic behavior in magnetic field.
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